Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 132: 111937, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38569427

ABSTRACT

Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.


Subject(s)
Latilactobacillus sakei , Mycobacterium tuberculosis , Probiotics , Animals , Probiotics/therapeutic use , Probiotics/administration & dosage , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Mice , Pneumonia/drug therapy , Pneumonia/immunology , Antitubercular Agents/therapeutic use , Antitubercular Agents/adverse effects , Female , Tuberculosis/drug therapy , Tuberculosis/immunology , Mice, Inbred C57BL , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/etiology , Humans , Lung/pathology , Lung/drug effects , Lung/immunology , Lung/microbiology , Interleukin-10/metabolism , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Liver/drug effects , Liver/pathology , Liver/immunology
2.
Vaccine ; 42(8): 1941-1952, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38368223

ABSTRACT

Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Mice , N-Acetylmuramoyl-L-alanine Amidase , Beijing , Tuberculosis/prevention & control , Disease Outbreaks , Antigens, Bacterial , BCG Vaccine
3.
Sci Rep ; 12(1): 15824, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138053

ABSTRACT

Previously, we reported that a hygromycin resistant version of the BCGΔBCG1419c vaccine candidate reduced tuberculosis (TB) disease in BALB/c, C57BL/6, and B6D2F1 mice infected with Mycobacterium tuberculosis (Mtb) H37Rv. Here, the second-generation version of BCGΔBCG1419c (based on BCG Pasteur ATCC 35734, without antibiotic resistance markers, and a complete deletion of BCG1419c) was compared to its parental BCG for immunogenicity and protective efficacy against the Mtb clinical isolate M2 in C57BL/6 mice. Both BCG and BCGΔBCG1419c induced production of IFN-γ, TNF-α, and/or IL-2 by effector memory (CD44+CD62L-), PPD-specific, CD4+ T cells, and only BCGΔBCG1419c increased effector memory, PPD-specific CD8+ T cell responses in the lungs and spleens compared with unvaccinated mice before challenge. BCGΔBCG1419c increased levels of central memory (CD62L+CD44+) T CD4+ and CD8+ cells compared to those of BCG-vaccinated mice. Both BCG strains elicited Th1-biased antigen-specific polyfunctional effector memory CD4+/CD8+ T cell responses at 10 weeks post-infection, and both vaccines controlled Mtb M2 growth in the lung and spleen. Only BCGΔBCG1419c significantly ameliorated pulmonary inflammation and decreased neutrophil infiltration into the lung compared to BCG-vaccinated and unvaccinated mice. Both BCG strains reduced pulmonary TNF-α, IFN-γ, and IL-10 levels. Taken together, BCGΔBCG1419c increased memory CD8+T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG.


Subject(s)
Mycobacterium tuberculosis , Pneumonia , Tuberculosis , Animals , BCG Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-10 , Interleukin-2 , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Tuberculin , Tuberculosis/microbiology , Tumor Necrosis Factor-alpha
4.
Br J Pharmacol ; 179(15): 3951-3969, 2022 08.
Article in English | MEDLINE | ID: mdl-35301712

ABSTRACT

BACKGROUND AND PURPOSE: To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effects. EXPERIMENTAL APPROACH: We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg-1 every 2 days). KEY RESULTS: Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1ß signalling and Cox-2-regulated PGE2 production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites. CONCLUSIONS AND IMPLICATIONS: The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Colchicine/metabolism , Colchicine/pharmacology , Cyclooxygenase 2/metabolism , Dinoprostone/pharmacology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
5.
Vaccines (Basel) ; 8(2)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545304

ABSTRACT

The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.

6.
J Cell Sci ; 132(17)2019 09 05.
Article in English | MEDLINE | ID: mdl-31371491

ABSTRACT

In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antigens, Bacterial/immunology , Dendritic Cells/immunology , Mycobacterium tuberculosis/immunology , Th1 Cells/immunology , Animals , Bacterial Proteins/immunology , Cell Differentiation/immunology , Cell Polarity/immunology , Cell Proliferation , Dendritic Cells/microbiology , Humans , Lipopolysaccharides/pharmacology , Mice , Mycobacterium tuberculosis/genetics , Signal Transduction , Th1 Cells/microbiology , Tuberculosis Vaccines/immunology
7.
Article in English | MEDLINE | ID: mdl-31275407

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging hepatic manifestation of metabolic syndrome. However, its unrevealed mechanism and complicated comorbidities have led to no specific medication, except for weight loss and lifestyle modification. Alisma orientale (Sam.) Juzep (A. orientale, Alismataceae) has been increasingly reported on therapeutic effects of A. orientale against NAFLD and metabolic syndrome such as insulin resistance, hyperlipidemia, and obesity. Therefore, this study aimed to review the preclinical efficacy of A. orientale and its chemical constituents including Alisol A 24-acetate, Alisol B 23-acetate, Alisol F, and Alismol against NAFLD and metabolic syndrome. A. orientale prevented hepatic triglyceride accumulation through suppressing de novo lipogenesis and increasing lipid export. In addition, it controlled oxidative stress markers, lipoapoptosis, liver injury panels, and inflammatory and fibrotic mediators, eventually influencing steatohepatitis and liver fibrosis. Moreover, it exhibited pharmacological activities against hyperlipidemia, obesity, and hyperglycemia as well as appetite. These biological actions of A. orientale might contribute to adiponectin activation or a role as a farnesoid X receptor agonist. In particular, Alisol A 24-acetate and Alisol B 23-acetate could be expected as main compounds. Taken together, A. orientale might be an effective candidate agent for the treatment of NAFLD and its comorbidities, although further assessment of its standardization, safety test, and clinical trials is consistently required.

8.
Int J Biol Sci ; 15(2): 464-480, 2019.
Article in English | MEDLINE | ID: mdl-30745835

ABSTRACT

Recently, interest in IL-15-differentiated cells has increased; however, the phenotypic definition of IL-15-differentiated bone marrow-derived cells (IL-15-DBMCs) is still under debate, particularly the generation of IFN-γ-producing innate cells such as premature NK (pre-mNK) cells, natural killer dendritic cells (NKDCs), interferon-producing killer dendritic cells (IKDCs), and type 1 innate lymphoid cells (ILC1s), all of which are IL-15-dependent. Here, we revisited the immunophenotypic characteristics of IFN-γ-producing IL-15-DBMCs and their functional role in the control of intracellular Mycobacterium tuberculosis (Mtb) infection. When comparing the cytokine levels between bone marrow-derived dendritic cells (BMDCs) and IL-15-DBMCs upon stimulation with various TLR agonists, only the CD11cint population of IL-15-DBMCs produced significant levels of IFN-γ, decreased levels of MHC-II, and increased levels of B220. Neither BMDCs nor IL-15-DBMCs were found to express DX5 or NK1.1, which are representative markers for the NK cell lineage and IKDCs. When the CD11cintB220+ population of IL-15-DBMCs was enriched, the Thy1.2+Sca-1+ population showed a marked increase in IFN-γ production. In addition, while depletion of the B220+ and Thy1.2+ populations of IL-15-DBMCs, but not the CD19+ population, inhibited IFN-γ production, enrichment of these cell populations increased IFN-γ. Ultimately, co-culture of sorted IFN-γ-producing B220+Thy1.2+ IL-15-DBMCs with Mtb-infected macrophages resulted in control of the intracellular growth of Mtb via the IFN-γ-nitric oxide axis in a donor cell number-dependent manner. Taken together, the results indicate that IFN-γ-producing IL-15-DBMCs could be redefined as CD11cintB220+Thy1.2+Sca-1+ cells, which phenotypically resemble both IKDCs and ILC1s, and may have therapeutic potential for controlling infectious intracellular bacteria such as Mtb.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Interferon-gamma/metabolism , Interleukin-15/metabolism , Animals , CD11c Antigen/metabolism , Cell Differentiation/physiology , Female , Flow Cytometry , Leukocyte Common Antigens/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice, Inbred C57BL , Mycobacterium tuberculosis
9.
Oncol Rep ; 39(3): 1141-1147, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29328387

ABSTRACT

Rhus verniciflua Stokes has been widely used as a traditional medicinal plant with a variety of pharmacological activities. We investigated the mechanisms involved in mediating the effects of Rhus verniciflua Strokes (R. verniciflua) extract in human chronic myelogenous leukemia K562 cells, including caspase-dependent apoptotic pathways related to cell-cycle arrest, as well as the inhibition of nuclear factor NF-κB activation and upregulation of the mitogen-activated protein kinase (MAPK) signaling pathway. R. verniciflua extract suppressed the abnormal cellular proliferation of K562 cells in a dose- and time­dependent manner and increased the quantitative proportions of cells involved in the early and late process of apoptosis. Furthermore, R. verniciflua extract significantly mediated the mRNA levels of pro-apoptotic and anti-apoptotic regulators, such as Bcl-2, Bax, Mcl-1 and survivin in apoptotic cells. Particularly, the treatment of K562 cells with R. verniciflua extract augmented the caspase­3 activity and increased the expression of caspase­3 protein, while co-treatment with R. verniciflua extract and the permeant pan­caspase inhibitor Z-VAD-FMK and caspase­3 inhibitor Z-DEVD-FMK inversely enhanced the proliferation of K562 cells. The extract of R. verniciflua inhibited the activation of NF-κB and the phosphorylation of ERK. Collectively, these results indicated that the extract of R. verniciflua inhibited the proliferation of human chronic myelogenous leukemia K562 cells by activating the apoptotic process via caspase­3 overexpression and the regulation of the NF-κB and MAPK signaling.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Plant Extracts/pharmacology , Rhus/chemistry , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...